

Accelerating Queries in Multilevel Secure Database

Systems
1

Ramzi A. Haraty

1
 and Roula C. Fany

2

1 Lebanese American University, P.O. Box 13-5053

Beirut, Lebanon

rharaty@beirut.lau.edu.lb
2 Beirut Ryad Bank, Ryad Soloh Street, Beirut Ryad Bank Building, Beirut, Lebanon,

rolafany@sodetel.net.lb

1
 Proceedings of the 10th International Conference on Computing and Information ICCI ‘2000, Kuwait,

November 18-21, 2000 (proceedings not published yet).

Abstract. Query acceleration and optimization continues to capture a great deal of attention

because data in networked systems is distributed to many sites and data transfer is a necessity.

Query optimization studies efficient techniques to minimize the cost and amount of data

transferred. However, in multilevel secure systems, not only the amount of data is important

but also the classification and flow of this data from and to specific sites. Multilevel secure

systems are distributed systems where each site contains data categorized by security levels,

which vary from unclassified to top secret. Each site cannot store data with higher security

level. Some research has been done in this area. In this paper, an algorithm is presented to

accelerate secured queries and results are compared to other method.

1 Introduction

The distribution of data over many sites has created new challenges and problems to solve

in order to access information accurately, confidentially, and efficiently. Security of data

accessed in multilevel systems is of paramount importance. Many algorithms have proposed

to store data securely and tried to suggest new techniques to control the mode of access

privileges of users to data, hence preventing any unauthorized disclosure of information

[3][6][7].

 Among those techniques, we name Air Force Summer Study [6] that deals with

classification of data. Hence, the basic idea is that data is classified according to certain

security levels that may range from: unclassified - classified - secret - top secret. Each level is

stored separately and in case of a distributed system, each site stores one specific level. The

main restrictions to respect are that a user is not allowed to view information with higher

security level and is allowed only to modify data and her/his level.

 In this work, we propose a method that will reduce the query response time of

transactions in multilevel secure systems and compare our results to other methods.

 This rest of this paper is organized as follows. Section 2 gives an overview of the basic

concepts along with the assumptions taken. Section 3 presents our suggested algorithm.

Section 4 shows an example of the calculations done. Section 5 presents the experimental

results obtained when compared to a join without any acceleration. Section 6 concludes the

paper and presents the future work to be done.

2 Basic Concepts and Assumptions

A MultiLevel Secure DataBase System (MLS/DBS) is a collection of users and data objects

or relations [2]. Users are assigned different classification levels and data objects are

mailto:rharaty@beirut.lau.edu.lb

assigned different sensitivity levels. Data are physically distributed and stored in separate

databases according to sensitivity level with each relation storing only tuples with the same

sensitivity level. It is the responsibility of the MLS/DBS to ensure that database users access

only those data items for which they have been granted a clearance. This architecture is fairly

secure since data are segregated and separated. However, performance overhead associated

with multilevel transactions is a major disadvantage.
 In order to prevent illegal disclosure of information, the flow of data should always go

from lower security levels to higher security levels. Thus, traditional data retrieval

mechanisms have to modified and, therefore, potentially become more complex.

 The straightforward or unoptimized solution to query processing would ensure the

confidentiality of data is maintained but would result in slow and inefficient queries while

increasing the traffic on the network. Query optimization aims at minimizing unnecessary and

redundant transfers by reducing data before shipment and then choosing a specific order of

data flow between sites. The traditional method used in query processing is a three-phased

approach that consists of the following:

 local processing to filter unnecessary data,

 semi-join reduction involving shipment of data from one site to another, and

 final assembly at the destination site.

 Using the above method, we notice that the flow of data is dependent on the maximum

gain to be achieved by reducing the cost of transfer. For this purpose, we will assume at this

point that the secure data to protect does not reside in the joining attributes that link between

relations.

 In our work, we also assume data transfer is done via secure communication channels

that ensure the encryption of data while being transferred, so no interference can be done

during this process.

3 The RR Algorithm

 Our query optimization algorithm uses as basis, the AHY General Total Time algorithm,

which was presented by Apers, Hevner and Yao [1][4]. Throughout this algorithm, different

schedules are built and compared until the most optimal one is chosen. During cost

calculations, the transmission cost will be computed as a linear function of the size of the

data. Schedule selectivity is calculated as a product of selectivities of all the attributes in the

schedule. A selectivity of an attribute is defined as the number of distinct values divided by

the number of possible values of the attribute [5].

 In our RR algorithm, the following steps are performed:

1. Perform all initial local processing.

2. Generate candidate relation schedules by isolating the attributes first and then

creating simple queries.

3. For each relation Ri,

a. Use procedure SERIAL_RR and create candidate schedules.

b. Use procedure TOTAL_RR to integrate candidate schedules.

3.1 Procedure SERIAL_RR

1. Order relations Ri such that

 S1 S2 … Sm

 where Si is the relation to be joined with Ri

2. If no relations are at the result node, then select strategy:

R1 R2 - - - Rn result node

Or else if Rr is a result at the result node, then there are two strategies:

R1 R2 - - - Rr - - - Rn Rr

 Or

R1 R2 … Rr-1 R r+1 … Rn Rr

 Select the one with minimum total time.

3. Build a list, L, where L Ri Ri+1 j is set to 1 when transmission was done from Ri to Ri+1 on

join attribute j.

4. When calculating transmission cost,

If L Ri Ri + 1 j = 1 then

cost = 0

Else

 If security level of Ri > Ri+1

 cost = C0 + C1 * bik + (bik * ?(i + 1) k)/8

Else

 cost = C0 + C1 * bik

 where :

C0 + C1 * bik is the linear function of transmission cost that is equal to the fixed cost per

byte transmitted (C1) multiplied by the size in bytes of the join attribute projected. This is the

usual cost of a semi-join known as the forward cost.

(bik * ?(i + 1) k)/8 is the backward cost that is the cost of transmitting back to Ri the bit vector

consisting of only matching values of the corresponding attribute. For simplicity of this

equation, we are considering attribute k of width 1 byte. This bit vector is sent back to Ri to be

stored if Ri has a higher security level than Ri+1 or else, it will be stored on Ri+1 and

transferred to Ri only when another join is needed between those two relations.

5. Select the strategy with minimum total time.

3.2 Procedure TOTAL_RR

1. Add candidate schedules: For each relation and candidate schedule, if the schedule

contains a transmission of a joining attribute of the relation then add another similar schedule

without the transmission of a joining attribute of the relation.

2. Calculate the cost of the newly added schedules as shown in step 4 of procedure

SERIAL_RR.

3. Select the best candidate schedule that minimizes the total time for each joining attribute.

4. Update the list L: Set to 1 the values corresponding to all transmissions of the BESTij

selected.

5. Candidate Schedule Ordering: For each relation Ri, order the candidate schedules BESTij

on joining attribute dij so that,

 ARTi1+C (s1*SLTi1) …ARTis+C (si*SLTis)

 where:

 ART is the arrival time of the best schedule.

 SLT is the accumulated attribute selectivity of the best schedule.

 si is the selectivity of the corresponding relation.

6. Schedule Integration: For each BESTij construct an integrated schedule to Ri that consists

of parallel transmission of candidate schedule BESTij and all schedules BESTik where k < j.

 As it can be seen, the RR algorithm does not eliminate redundant transmissions from the

schedules but it makes their cost 0 when they occur. This can be made possible by adding a

little overhead on the transmission cost, which is the backward cost. Using this fact, if a

transmission was done from site A to site B using a join attribute j, then every other

transmission from A to B using j will have a zero cost and every transmission from B to A

using j will have also a zero cost (if A and B have the same security level). From this point,

the join can be seen as a non-redundant symmetric function. This fundamental property

allowed us to enhance over traditional methods.

 We note that the reduction effect of the algorithm is proportional to the width of the

attributes used. In section 5, we show results from different width selections to clarify this

issue.

3.3 Complexity Analysis of the RR Algorithm

As far as complexity is concerned, we can say that, without loss of generality, algorithm RR

takes no more than O (sm2) where:

s: number of different simple queries.

m: number of relations in the query.

4 A Comparative Example

Consider an AIRCRAFT database that describes a database for aircraft supply system. The

database consists of the following relations:

1. PARTS (P#, PNAME): This relation identifies the different parts of a plane. It is stored

at the unclassified level.

2. ON_ORDER (S#, P#, QTY): This relation contains identifies the supplier number for

each part of the aircraft and the corresponding quantity on order. This relation is stored at the

confidential level.

3. S_P_J (S#, P#, J#): This relation contains for each job number, the part numbers and

from which suppliers they are. S_P_J is stored at the secret level.

 Also consider the following query: List the product number, name and total quantity for

all parts if the aircraft that are currently on order from suppliers who supply that part to jobs 1

or 2.

 The two joining attributes are: P# and S#. The cost function to be used is: C(X) = 20 + X.

It is a linear function in the form of y= aX + b where:

a- cost added per byte transmitted.

b- fixed cost dependent on the network used. In this example b is taken as 20.

The corresponding size and selectivity relations are given in the following figure:

 Fig. 1. Relations Description

For each relation we have as given:

|Ri|: cardinality of the relation (number of tuples).

Si : size of the relation in bytes.

bii : for each joining attribute, the size, in bytes, of the column in the corresponding

relation.

ii : for each joining attribute, the corresponding selectivity.

 Applying RR to this query, two simple queries are formed for attributes di1 and di2. In

step 2 of the algorithm, the following serial candidate schedules are formed:

For di1,

 d11

d11: 420

 C(400)

 d11 d21

d21: 420 180

 C(400) C(0.4 * 400)

 d11 d21 d31

d31: 420 180 164

 C(400) C(0.4 * 400) C(0.4*0.4*900)

For di2,

 d12

d12: 120

 C(100)

 d12 d22

d22: 120 110

 C(100) C(0.2 * 450)

Next, we will start the construction of the schedules for each relation. Before proceeding,

list L is initialized to 0 for all its entries.

For Relation R1:

Attribute d11: The following schedules are added:
 d21

d’
21 : 420

 C(400)

 d21 d31

d’31 : 436 380

 C(400) C(0.4 * 900)

Each of the schedules of d11 is applied to R1.

 d11 d21 R1

d21 : 420 180 420

Total time = C(400)+C(0.4*1000)+C(0.4 *2000)

 = 420 + 180 + 420

 = 1020

 d11 d21 d31 R1

d31 : 420 180 164 380

Total time = C(400)+C(0.4*400)+C(0.4*0.4*900)+C(0.4*0.9*1000)

 = 420 + 180 + 164 + 380

 = 1144

 d21 R1

d’21 : 427 420

Total time = C(400 + 140 * 0.4/8) + C(0.4 * 1000)

 = 427 + 420

 = 847

 d21 d31 R1

d’31 : 420 388 380

Total time = C(400)+C(0.4*900+150*0.4/8)+ C(0.4*0.9*1000)

 = 420 + 388 + 380

 = 1188

Choosing the minimum time schedule, we find that BEST11 is d’21 with time 847.

Attribute d12: The following candidate schedule added:

 d22

d’22 : 470

 C(450)

Each of the schedules of d12 is applied to R1.

 d12 d22 R1

d22 : 120 114 920

Total time = C(100)+ (0.2*450+140*0.2/8)+C(0.9*1000)

 = 120 + 114 + 920

 = 1156

 d22 R1

d’22 : 474 920

Total time = C(450 + 140 * 0.2/8) + C(0.9 * 1000)

 = 474 + 920

 = 1394

We find BEST12 is d22 with time 1156.

Finally, for R1, we choose BEST11 with time 847.

At this stage we update L2—1, 1 = 1 and L1—2 , 1 = 1.

For Relation R2:

Attribute d11:

 d11

d’21 : 420

 C(400)

 d11 d31

d’31 : 420 380

 C(400) C(0.4 * 900)

Each of the schedules of d11 is applied to R2.

 d11 d21 R2

d21 : 24 180 820

Total time=C(70*0.4/8)+C(0.4*400)+C(0.4* 2000)

 = 24 +180 + 820

 = 1024

Note that transmission from 1—2 on attribute 1 is 24 which is the transmission cost of the bit

vector stored in site 2 because L1—2, 1 = 1.

 d11 d21 d31 R2

d31 : 24 187 36 740

Total time = C(70*0.4/8)+C(0.4*400+140*0.4*0.9/8) + C(140*0.9/8) +C(0.4*0.9 * 2000)

 = 24 + 187 + 36+ 740

 = 987

 d21 R2

d’21 : 427 820

Total time = C(400 + 140 * 0.4/8) + C(0.4 * 2000)

 = 427 + 820

 = 1247

 d11 d31 R2

d’31 : 420 387 740

Total time =C(400)+C(0.4*900+150* 0.4*0.9/8)+C(0.4*0.9*2000)

 = 420 + 387 + 740

 = 1547

We find BEST21 is d31 with total time 987. Also, we find BEST22 d’22 with total time 1948.

Finally, for R2 we choose d31 with total time 987.

L2—3, 1 = 1 and L3—2, 1 = 1

Applying for relation R3 we get BEST31 with total time 740.

Hence, the most optimal total time with RR algorithm for this query is:

847 + 987 + 740 = 2574.

 Using the unoptimized method we would get: 6060. Therefore, our contribution is:

(6060 – 2574) / 6060 = 57.5% where contribution is equal to the initial time - enhanced time

divided by the initial time. In our case the initial time is unoptmized time and the enhanced

time is RR time.

5 Experimental Results

 Different scenarios were conceived in order to evaluate the performance of the different

algorithms and for each scenario programs were run 700 times.

 Note that all programs were developed using Visual C++ 4.0 under Windows 95.

Experiments were conducted on a Pentium V PC with 64 MB RAM.

5.1 Scenario 1

In this scenario the attribute width is taken as 1 byte for all attributes. Graphically, the

results are represented as follows:

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

2-2 2-3 2-4 3-2 3-3 3-4 4-2 4-3 4-4

Number of relations - Number of join attributes

C
o
s
t

Unoptimized RR

5.2 Scenario 2

In this scenario the attribute width is taken as 5 bytes for all attributes. Graphically, the

results are represented as follows:

0

50000

100000

150000

200000

2-2 2-3 2-4 3-2 3-3 3-4 4-2 4-3 4-4

Number of relations - Number of join attributes

C
o
st

Unoptimized RR

5.3 Scenario 3

In this scenario the attribute width is taken as 50 bytes for all attributes. Graphically, the

results are represented as follows:

0

500000

1000000

1500000

2000000

2500000

2-2 2-3 2-4 3-2 3-3 3-4 4-2 4-3 4-4

Number of relations - Number of join attributes

C
o

st

Unoptimized RR

 We used three different scenarios in order to study the performance of the algorithms

from different perspectives. For each scenario, we compared the performance of the

algorithms with respect to the unoptimized solution. Using different scenarios we studied

better the behavior of all algorithms under a variety of circumstances. We could be able to

note that RR has the best performance for a field width of 50 bytes. This result was expected

because of the overhead added to the backward phase. Remember that RR provides for

returning back to the original site a bit vector representing the matching tuples. This overhead

is somehow more considerable when the original field width is relatively small is size because

it might be more profitable sometimes not to send back this data. But when having a width of

50 bytes, the backward cost becomes negligible as compared to the forward cost.

6 Conclusion and Future Work

In this paper, an algorithm using semi-joins was presented as our contribution to the query

optimization problem for multilevel secured databases.

 Experimental results confirmed our expectations by showing a considerable enhancement

over the unoptimized methods. Different series of experiments were conducted, allowing us to

study even better the efficiency of the algorithm from different perspectives and to consider

the best case for which it performs at best. We could then, based on our experiments

recommend the use of the RR algorithm for huge textual and graphic distributed secured

databases where the width of some join attributes is quite large, as well as for ordinary data.

 However, based on the fact that during the query processing, data in the relations should

not be updated without updating the list accordingly and because not much work has been

done until now to deal with this problem, we view RR algorithm as a good solution for

distributed query optimization for multilevel secured databases that can be adapted for huge,

static warehouses where data is not changed very frequently.

References

1. Apers, P., Hevner. A., Bing Y.: Optimization Algorithms for Distributed Queries.

IEEE Transactions on Software Engineering, Vol. Se-9, No. 1 (1983)

2. Bell, D., LaPadula, L.: Secure Computer Systems: Unified Exposition and

Multics Interpretation. The Mitre Corporation (1976)

3. Haraty, R.: Concurrency Control and Query Processing in Multilevel Secure

Kernelized Databases. Proceedings of the Symposium on Applied Computing. Phoenix, AZ

(1994)

4. Hevner, A., Wu, O., Bing Y.: Query Optimization on Local Area Networks. ACM

Transactions on Office Information Vol. 3, No. 1 (1985)

5. Li, Z., Ross, K.: Fast Joins Using Join Indices. VLDB Journal, Vol. 8, No. 1.

(1999)

6. Multilevel Data Management Security. Committee on Multilevel Data

Management Security. Air Force Studies Board. National Research Council. Washington, DC

(1983)

7. Perrizo, W., Panda, P.: Query Acceleration in Multilevel Secure Database

Systems. Proceedings of the 16th National Computer Security Conference. Maryland (1993)

