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Abstract. Query acceleration and optimization continues to capture a great deal of attention 

because data in networked systems is distributed to many sites and data transfer is a necessity. 

Query optimization studies efficient techniques to minimize the cost and amount of data 

transferred. However, in multilevel secure systems, not only the amount of data is important 

but also the classification and flow of this data from and to specific sites. Multilevel secure 

systems are distributed systems where each site contains data categorized by security levels, 

which vary from unclassified to top secret. Each site cannot store data with higher security 

level. Some research has been done in this area. In this paper, an algorithm is presented to 

accelerate secured queries and results are compared to other method. 

 

 

1  Introduction 

 
The distribution of data over many sites has created new challenges and problems to solve 

in order to access information accurately, confidentially, and efficiently. Security of data 

accessed in multilevel systems is of paramount importance. Many algorithms have proposed 

to store data securely and tried to suggest new techniques to control the mode of access 

privileges of users to data, hence preventing any unauthorized disclosure of information 

[3][6][7].  

    Among those techniques, we name Air Force Summer Study [6] that deals with 

classification of data. Hence, the basic idea is that data is classified according to certain 

security levels that may range from: unclassified - classified - secret - top secret. Each level is 

stored separately and in case of a distributed system, each site stores one specific level. The 

main restrictions to respect are that a user is not allowed to view information with higher 

security level and is allowed only to modify data and her/his level. 

    In this work, we propose a method that will reduce the query response time of 

transactions in multilevel secure systems and compare our results to other methods. 

    This rest of this paper is organized as follows. Section 2 gives an overview of the basic 

concepts along with the assumptions taken. Section 3 presents our suggested algorithm. 

Section 4 shows an example of the calculations done. Section 5 presents the experimental 

results obtained when compared to a join without any acceleration. Section 6 concludes the 

paper and presents the future work to be done. 

 

2  Basic Concepts and Assumptions 

 
A MultiLevel Secure DataBase System (MLS/DBS) is a collection of users and data objects 

or relations [2]. Users are assigned different classification levels and data objects are 
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assigned different sensitivity levels. Data are physically distributed and stored in separate 

databases according to sensitivity level with each relation storing only tuples with the same 

sensitivity level. It is the responsibility of the MLS/DBS to ensure that database users access 

only those data items for which they have been granted a clearance. This architecture is fairly 

secure since data are segregated and separated. However, performance overhead associated 

with multilevel transactions is a major disadvantage.  
    In order to prevent illegal disclosure of information, the flow of data should always go 

from lower security levels to higher security levels. Thus, traditional data retrieval 

mechanisms have to modified and, therefore, potentially become more complex.  

    The straightforward or unoptimized solution to query processing would ensure the 

confidentiality of data is maintained but would result in slow and inefficient queries while 

increasing the traffic on the network. Query optimization aims at minimizing unnecessary and 

redundant transfers by reducing data before shipment and then choosing a specific order of 

data flow between sites. The traditional method used in query processing is a three-phased 

approach that consists of the following: 

 local processing to filter unnecessary data,  

 semi-join reduction involving shipment of data from one site to another, and 

 final assembly at the destination site. 

 

    Using the above method, we notice that the flow of data is dependent on the maximum 

gain to be achieved by reducing the cost of transfer. For this purpose, we will assume at this 

point that the secure data to protect does not reside in the joining attributes that link between 

relations. 

    In our work, we also assume data transfer is done via secure communication channels 

that ensure the encryption of data while being transferred, so no interference can be done 

during this process. 

 

3  The RR Algorithm 

 
       Our query optimization algorithm uses as basis, the AHY General Total Time algorithm, 

which was presented by Apers, Hevner and Yao [1][4]. Throughout this algorithm, different 

schedules are built and compared until the most optimal one is chosen. During cost 

calculations, the transmission cost will be computed as a linear function of the size of the 

data. Schedule selectivity is calculated as a product of selectivities of all the attributes in the 

schedule. A selectivity of an attribute is defined as the number of distinct values divided by 

the number of possible values of the attribute [5]. 

    In our RR algorithm, the following steps are performed: 

1. Perform all initial local processing. 

2. Generate candidate relation schedules by isolating the attributes first and then 

creating simple queries. 

3. For each relation Ri, 

a. Use procedure SERIAL_RR and create candidate schedules. 

b. Use procedure TOTAL_RR to integrate candidate schedules. 

 

3.1  Procedure SERIAL_RR 

 
1. Order relations Ri such that 

                   S1 S2 …  Sm   

    where Si is the relation to be joined with Ri 

2. If no relations are at the result node, then select strategy: 

R1  R2  - - - Rn   result node 

 

 

 

 



     

 

 

 

 

 

 

 

Or else if Rr is a result at the result node, then there are two strategies: 

R1    R2   - - -  Rr  - - - Rn   Rr  

    Or 

R1  R2 …  Rr-1  R r+1  … Rn   Rr 

    Select the one with minimum total time. 

3. Build a list, L, where L Ri Ri+1 j is set to 1 when transmission was done from Ri to Ri+1 on 

join attribute j. 

4. When calculating transmission cost, 

If L Ri Ri + 1 j = 1 then 

cost = 0 

Else 

 If security level of Ri > Ri+1 

   cost = C0 + C1 * bik + (bik * ?(i + 1) k )/8 

Else 

   cost = C0 + C1 * bik 

      where : 

C0 + C1 * bik is the linear function of transmission cost that is equal to the fixed cost per 

byte transmitted (C1) multiplied by the size in bytes of the join attribute projected. This is the 

usual cost of a semi-join known as the forward cost.  

(bik * ?(i + 1) k )/8 is the backward cost that is the cost of transmitting back to Ri the bit vector 

consisting of only matching values of the corresponding attribute. For simplicity of this 

equation, we are considering attribute k of width 1 byte. This bit vector is sent back to Ri to be 

stored if Ri has a higher security level than Ri+1 or else, it will be stored on Ri+1 and 

transferred to Ri only when another join is needed between those two relations. 

5. Select the strategy with minimum total time. 

 

3.2 Procedure TOTAL_RR 

 
1. Add candidate schedules: For each relation and candidate schedule, if the schedule 

contains a transmission of a joining attribute of the relation then add another similar schedule 

without the transmission of a joining attribute of the relation. 

2. Calculate the cost of the newly added schedules as shown in step 4 of procedure 

SERIAL_RR. 

3. Select the best candidate schedule that minimizes the total time for each joining attribute. 

4. Update the list L: Set to 1 the values corresponding to all transmissions of the BESTij 

selected. 

5. Candidate Schedule Ordering: For each relation Ri, order the candidate schedules BESTij 

on joining attribute dij so that, 

      ARTi1+C (s1*SLTi1) …ARTis+C (si*SLTis) 

      where: 

      ART  is the arrival time of the best schedule. 

      SLT  is the accumulated attribute selectivity of the best schedule. 

      si is the selectivity of the corresponding relation. 

6. Schedule Integration: For each BESTij construct an integrated schedule to Ri that consists 

of parallel transmission of candidate schedule BESTij and all schedules BESTik where k < j.  

 

    As it can be seen, the RR algorithm does not eliminate redundant transmissions from the 

schedules but it makes their cost 0 when they occur. This can be made possible by adding a 

little overhead on the transmission cost, which is the backward cost. Using this fact, if a 

transmission was done from site A to site B using a join attribute j, then every other 

 

 

 

 

 

 

 



 

 

 

 

 

transmission from A to B using j will have a zero cost and every transmission from B to A 

using j will have also a zero cost (if A and B have the same security level). From this point, 

the join can be seen as a non-redundant symmetric function. This fundamental property 

allowed us to enhance over traditional methods. 

    We note that the reduction effect of the algorithm is proportional to the width of the 

attributes used. In section 5, we show results from different width selections to clarify this 

issue. 

 

3.3 Complexity Analysis of the RR Algorithm  

 
As far as complexity is concerned, we can say that, without loss of generality, algorithm RR 

takes no more than O (sm2) where: 

s: number of different simple queries. 

m: number of relations in the query. 

 

4  A Comparative Example 

 
Consider an AIRCRAFT database that describes a database for aircraft supply system. The 

database consists of the following relations: 

1. PARTS (P#, PNAME): This relation identifies the different parts of a plane. It is stored 

at the unclassified level. 

2. ON_ORDER (S#, P#, QTY): This relation contains identifies the supplier number for 

each part of the aircraft and the corresponding quantity on order. This relation is stored at the 

confidential level. 

3. S_P_J (S#, P#, J#): This relation contains for each job number, the part numbers and 

from which suppliers they are. S_P_J is stored at the secret level. 

 

    Also consider the following query: List the product number, name and total quantity for 

all parts if the aircraft that are currently on order from suppliers who supply that part to jobs 1 

or 2. 

    The two joining attributes are: P# and S#. The cost function to be used is: C(X) = 20 + X. 

It is a linear function in the form of y= aX + b where: 

a- cost added per byte transmitted. 

b- fixed cost dependent on the network used. In this example b is taken as 20. 

 

The corresponding size and selectivity relations are given in the following figure: 

 

 
 

                                               Fig. 1. Relations Description 

 

For each relation we have as given: 

|Ri|: cardinality of the relation (number of tuples). 

Si  : size of the relation in bytes. 

bii : for each joining attribute, the size, in bytes, of the column in the corresponding 

relation. 

ii : for each joining attribute, the corresponding selectivity. 

 

 

 

 

 

 

 

 



 

 

 

    Applying RR to this query, two simple queries are formed for attributes di1 and di2. In 

step 2 of the algorithm, the following serial candidate schedules are formed: 

For di1, 

      d11 

d11:           420 

             C(400)  

      d11                  d21  

d21:  420              180           

             C(400) C(0.4 * 400) 

      d11                   d21     d31 

d31:           420       180           164                                   

             C(400)    C(0.4 * 400) C(0.4*0.4*900) 

For di2, 

      d12 

d12:          120                         

            C(100) 

      d12                    d22 

d22:          120        110                    

            C(100) C(0.2 * 450) 

 

Next, we will start the construction of the schedules for each relation. Before proceeding, 

list L is initialized to 0 for all its entries. 

 

For Relation R1: 

Attribute d11: The following schedules are added: 
             d21 

d’
21 :           420  

   C(400) 

            d21  d31        

d’31 :           436         380 

      C(400)       C(0.4 * 900) 

 

Each of the schedules of d11 is applied to R1. 

       d11                 d21     R1 

d21 :              420                         180                         420  

 

Total time = C(400)+C(0.4*1000)+C(0.4 *2000) 

                  = 420 + 180 + 420 

                  = 1020 

      d11              d21                  d31                        R1 

d31 : 420                 180                   164                     380                               

 

Total time = C(400)+C(0.4*400)+C(0.4*0.4*900)+C(0.4*0.9*1000) 

                  = 420 + 180 + 164 + 380 

                           = 1144 

       d21                   R1 

d’21 : 427                        420   

 

Total time = C(400 + 140 * 0.4/8) + C(0.4 * 1000) 

    = 427 + 420 

      = 847 

 

 

 

 

 

 

 

 

 

 

 

 



             d21  d31           R1 

d’31 :        420          388  380 

 

Total time = C(400)+C(0.4*900+150*0.4/8)+ C(0.4*0.9*1000) 

     = 420 + 388 + 380 

                  = 1188 

 

Choosing the minimum time schedule, we find that BEST11 is d’21 with time 847. 

 

Attribute d12: The following candidate schedule added: 

              d22 

d’22 :       470 

   C(450) 

 

Each of the schedules of d12 is applied to R1. 

 

             d12  d22               R1 

d22 :           120          114  920 

 

 

Total time = C(100)+ (0.2*450+140*0.2/8)+C(0.9*1000) 

    = 120 + 114 + 920 

                  = 1156 

             d22  R1 

d’22 :           474           920 

   

Total time = C(450 + 140 * 0.2/8) + C(0.9 * 1000) 

                 = 474 + 920 

                 = 1394 

 

We find BEST12 is d22 with time 1156. 

 

Finally, for R1, we choose BEST11 with time 847. 

At this stage we update L2—1, 1 = 1   and L1—2 , 1 = 1. 

 

For Relation R2: 

Attribute d11: 

             d11 

d’21 :      420 

   C(400) 

            d11  d31 

d’31 :      420          380 

      

               C(400)       C(0.4 * 900) 

 

Each of the schedules of d11 is applied to R2. 

             d11  d21           R2 

d21 :        24         180  820 

 

Total time=C(70*0.4/8)+C(0.4*400)+C(0.4* 2000) 

                 = 24 +180 + 820 

                 = 1024 

Note that transmission from 1—2 on attribute 1 is 24 which is the transmission cost of the bit 

vector stored in site 2 because L1—2, 1 = 1. 

 

 

 

 

 

 

 

 

 

 

             d11                  d21                        d31                         R2 

d31 :      24      187          36           740 



 

Total time = C(70*0.4/8)+C(0.4*400+140*0.4*0.9/8) + C(140*0.9/8) +C(0.4*0.9 * 2000) 

                 = 24 + 187 + 36+ 740 

                 = 987 

              d21  R2 

d’21 :      427          820 

 

Total time = C(400 + 140 * 0.4/8) + C(0.4 * 2000) 

                 = 427 + 820 

                 = 1247 

              d11  d31          R2 

d’31 :          420          387  740 

 

Total time =C(400)+C(0.4*900+150* 0.4*0.9/8)+C(0.4*0.9*2000) 

      = 420 + 387 + 740 

                  = 1547 

 

We find BEST21 is d31 with total time 987. Also, we find BEST22 d’22 with total time 1948. 

Finally, for R2 we choose d31 with total time 987. 

L2—3, 1 = 1 and L3—2, 1 = 1 

 

Applying for relation R3 we get BEST31 with total time 740. 

 

Hence, the most optimal total time with RR algorithm for this query is:  

847 + 987 + 740 = 2574. 

 

   Using the unoptimized method we would get: 6060. Therefore, our contribution is:  

(6060 – 2574) / 6060 = 57.5% where contribution is equal to the initial time - enhanced time 

divided by the initial time. In our case the initial time is unoptmized time and the enhanced 

time is RR time. 

 

5  Experimental Results 

 
    Different scenarios were conceived in order to evaluate the performance of the different 

algorithms and for each scenario programs were run 700 times. 

    Note that all programs were developed using Visual C++ 4.0 under Windows 95. 

Experiments were conducted on a Pentium V PC with 64 MB RAM. 

 

5.1 Scenario 1 

 
In this scenario the attribute width is taken as 1 byte for all attributes. Graphically, the 

results are represented as follows:  
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5.2 Scenario 2 

 
In this scenario the attribute width is taken as 5 bytes for all attributes. Graphically, the 

results are represented as follows:  
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5.3 Scenario 3 

 
In this scenario the attribute width is taken as 50 bytes for all attributes. Graphically, the 

results are represented as follows: 
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    We used three different scenarios in order to study the performance of the algorithms 

from different perspectives. For each scenario, we compared the performance of the 

algorithms with respect to the unoptimized solution. Using different scenarios we studied  

 

 

 

 

 

 

 

 

 

 

 



better the behavior of all algorithms under a variety of circumstances. We could be able to 

note that RR has the best performance for a field width of 50 bytes. This result was expected 

because of the overhead added to the backward phase. Remember that RR provides for 

returning back to the original site a bit vector representing the matching tuples. This overhead 

is somehow more considerable when the original field width is relatively small is size because 

it might be more profitable sometimes not to send back this data. But when having a width of 

50 bytes, the backward cost becomes negligible as compared to the forward cost. 

 

6  Conclusion and Future Work 

 
In this paper, an algorithm using semi-joins was presented as our contribution to the query 

optimization problem for multilevel secured databases.  

    Experimental results confirmed our expectations by showing a considerable enhancement 

over the unoptimized methods. Different series of experiments were conducted, allowing us to 

study even better the efficiency of the algorithm from different perspectives and to consider 

the best case for which it performs at best. We could then, based on our experiments 

recommend the use of the RR algorithm for huge textual and graphic distributed secured 

databases where the width of some join attributes is quite large, as well as for ordinary data. 

    However, based on the fact that during the query processing, data in the relations should 

not be updated without updating the list accordingly and because not much work has been 

done until now to deal with this problem, we view RR algorithm as a good solution for 

distributed query optimization for multilevel secured databases that can be adapted for huge, 

static warehouses where data is not changed very frequently. 
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